On Parabolic Volterra Equations Disturbed by Fractional Brownian Motions

نویسنده

  • STEFAN SPERLICH
چکیده

Aim of this paper is to study the parabolic Volterra equation u(t) + (b ∗Au)(t) = (QB)(t), t ≥ 0, on a separable Hilbert space. Throughout this work the operator −A is assumed to be a differential operator like the Laplacian, the elasticity operator, or the Stokes operator. The random disturbance Q1/2BH is modeled to be a system independent vector valued fractional Brownian motion with Hurst parameter H ∈ (0, 1). We derive optimal conditions for the existence of a unique mild solution and the Hölderianity of its trajectories. For this purpose we do the analysis on stochastic integrals of the form ∫ ∞ 0 R(t)d(QB)(t), t ≥ 0, where the integrand R is a deterministic, operator valued function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Volterra Equations in Banach Spaces and Stochastic Partial Differential Equations*

In this paper, we first study the existence-uniqueness and large deviation estimate of solutions for stochastic Volterra integral equations with singular kernels in 2-smooth Banach spaces. Then, we apply them to a large class of semilinear stochastic partial differential equations (SPDE) driven by Brownian motions as well as by fractional Brownian motions, and obtain the existence of unique max...

متن کامل

Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation o...

متن کامل

Stochastic differential equations driven by fractional Brownian motions

2 Young’s integrals and stochastic differential equations driven by fractional Brownian motions 4 2.1 Young’s integral and basic estimates . . . . . . . . . . . . . . . . . . 4 2.2 Stochastic differential equations driven by a Hölder path . . . . . . . 7 2.3 Multidimensional extension . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Fractional calculus . . . . . . . . . . . . . . . . . . . ...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007